

 [image: Cover image]

 Automating Exhibition Catalogue Creation

 —A Guide

 v1.0

 by Team Editorial

 About the prototype

 Publication type: Use case - An exhibition catalogue

 	
 We are creating a demonstration prototype: An exhibition catalogue about a baroque painting collection.

 	
 Objectives:

 	
 Write an exhibition catalogue essay using AI tools

 	
 Review the 'catalogue essay and AI tools' as open peer review

 	
 Create the parts of the the catalogue:

 	
 Cover

 	
 Colophon

 	
 Essay

 	
 Collection

 	
 What is the collection?

 	
 The catalogue uses part of a Wikidata based collection of Bavarian collections of Baroque paintings. See: 17C Bavarian painting.

 	
 We focus on the Baroque period: Bavarian Collections, 1590-1750 query link

 	
 We make a small collection of paintings - 9 in this case.

 	
 How are we using computational publishing and what is the prototype experiment?

 	
 Creating a publication from different distributed (federated) remote sources using linked open data.

 	
 Showing how asyncronous work can be carried out by team working on a single publication - this is the power of the TOC part! Which in more advanced domains becomes package management.

 Learning points

 Workflow activities that will be covered to create the exhibition catalogue:

 	
 Real-time collaborative editing,

 	
 Creating a Wikidata query of a collection,

 	
 Displaying a painting catalogue sample collection from Wikidata LOD query for a multi-format publication.

 	
 Editing a Jupyter Notebook in MyBinder,

 	
 Embedding media objects: Video - TIB AV Portal, and; Semantic Kompakkt,

 	
 Using GitHub

 	
 Accessing API content for colophon

 	
 Editing Wikidata collection query in Juypter Notebooks

 	
 Asycrononous collective working and making a publication from multiple remote Linked Open Data (LOD) sources, and

 	
 Rendering a multi-format publication with CSS styling.

 Software (open-source)

 Over 2023/24 the computational components will be added to the ADA Semantic Publishing Pipeline as well as introducing Vivliostyle Create Book markdown renderer and swapping to Jupyter Book computational book platform away from Quarto – https://github.com/NFDI4Culture/ada

 	
 Wikidata – https://www.wikidata.org/

 	
 Jupyter Notebooks – https://jupyter.org/

 	
 Jupyter Book – https://jupyterbook.org/

 	
 Quarto – https://quarto.org/

 	
 Semantic Kompakkt – https://semantic-kompakkt.de/

 	
 TIB AV Portal – https://av.tib.eu/

 	
 HedgeDoc – https://HedgeDoc.org/

 	
 Thoth – https://thoth.pub/

 	
 Vivliostyle – https://vivliostyle.org/

 	
 Create Book – Markdown renderer

 	
 Wikibase – https://wikiba.se/

 	
 Zenodo - https://zenodo.org/

 	
 NextCloud - Tetx editor and Markdown editor - Text : https://github.com/nextcloud/text Markdown: https://apps.nextcloud.com/apps/files_markdown

 AI Software

 To be confirmed

 https://openai.com/blog/chatgpt

 https://www.perplexity.ai/

 Activity: Editing a Jupyter Notebooks and accessing video

 Objective: Running and editing Juypter Notebooks in MyBinder and retrieving video and 3D models as embeds.

 External LOD and media used: TIB AV Portal, and Semantic Kompakkt

 Notes: Jupyter Notebooks editing in MyBinder

 	
 Run a Jupyter Notebook in MyBinder

 	
 Edit a Jupyter Notebook

 	
 Render a Jupyter Notebooks

 Links:

 	
 Sample Jupyter Notebook: Video and 3D Notebook embeds

 	
 TIB AV Portal: https://av.tib.eu/

 	
 Semantic Kompakkt demo site: https://kompakkt.wbworkshop.tibwiki.io/explore

 	
 View a model, copy the iframe embed from the folder icon, top right. In the Notebook paste in the complete iframe cover replacing the existing iframe:

 <iframe

 name="Doric Column"

 src="https://kompakkt.wbworkshop.tibwiki.io/viewer/?entity=63e8c22910e4f555d1f656ca&mode=open"

 allowfullscreen

 loading="lazy"

 ></iframe>

 Steps

 	
 Open Notebook in the browser using MyBinder - Video and 3D Notebook embeds - click the 'launch binder' button to run the Notebook in MyBinder.

 	
 Add new videos and 3D models to the Notebook from TIB AV Portal and Semantic Kompakkt.

 	
 Open a second browser tab and load TIB AV Portal

 	
 Choose a video and copy across the video ID from the URL https://av.tib.eu/media/60729

 	
 Paste the video ID into the video iframe field and run the cell to render

 	
 Open Semantic Kompakkt demo site: https://kompakkt.wbworkshop.tibwiki.io/explore

 	
 View a model, copy the iframe embed from the folder icon, top right. In the Notebook paste in the complete iframe cover replacing the existing iframe:

 <iframe

 name="Doric Column"

 src="https://kompakkt.wbworkshop.tibwiki.io/viewer/?entity=63e8c22910e4f555d1f656ca&mode=open"

 allowfullscreen

 loading="lazy"

 ></iframe>

 	
 Run the Notebook

 	
 3D view size, we can make the initial view bigger, add:

 <iframe

 width="1200" height="630"

 	
 Download Notebook

 	
 Render some videos and 3D models in the Quarto book. Pass along video id codes and 3d models using a hedge doc and chat to the Quarto render. The rendering and final display will take less than 10 minutes (hopefully): a. The code needs to be added to the main repo; b. Rendered locally; c. Uploaded to GitHub; d. Time for GitHub Pages to finish loading.

 	
 Code: https://github.com/SimonXIX/Experimental_Books_workshop/blob/main/paintings.ipynb

 	
 Rendering: https://simonxix.github.io/Experimental_Books_workshop/paintings.html

 Activity: GitHub on boarding

 Objective: On boarding and familiarisation with using GitHub for publishing and asynchronous working.

 Publication repository: https://github.com/NFDI4Culture/catalogue-003

 	
 Creating an account

 	
 Joining an organisation

 	
 Forking a repository

 	
 Cloning a repository - use GitHub Desktop, Visual Studio Code, or any other tool to copy the repository to your local machine

 	
 IMPORTANT!: Turning on Github Pages.

 	
 First go to the Settings tab in your repository; second in the left menu go down to Pages; third, secect main, docs - and save. In a few minutes this will torn on your Github Pages website. Congrats!

 	

 Figure 1: Turn on GitHub Pages

 	
 The last steup is to add the GitHub Pages URL to the front end information panel of your repository.

 	
 Navigate back ton the Code view of your repo. Top your you can add your GitHub Pages URL to the About information of your repository. Open the About area by clicking on the cog icon. The in the dialog window click the use Pages address, and save.

 	

 Figure 2: Add Pages URL to repo frontend

 	
 Enabling a local editor: Visual Studio Code

 	
 Attribution and citation

 Quarto Install

 Quarto help docs: https://quarto.org/

 Options

 For general purposes use the manual install. The Docker install is for when you are running multiple environments on your computer or carrying out long term development.

 	
 Manual install

 	
 Docker install

 	
 Visual Code Studio install (not covered here)

 Manual install

 https://quarto.org/docs/get-started/

 Note: They miss out that you need Python installed and Jupyter Lab and a working terminal to install them

 https://www.python.org/downloads/

 https://jupyter.org/install

 Also install Panda: py -m pip install panda

 As well as knowing what the Python prompt and escape looks like: https://stackoverflow.com/questions/41524734/how-to-exit-python-script-in-command-prompt

 If on Windows pip or python wont run. Check the solution here to add the python path for the Terminal April 23.

 Docker install

 Docker Compose

 Text source: Readme - Thanks to Simon Bowie

 https://github.com/NFDI4Culture/cp4c

 This repository also contains Docker Compose and Dockerfiles for running the various applications in Docker containers.

 Run docker-compose up -d --build to start the containers and docker-compose down to stop the containers.

 The jupyterlab container runs a stand-alone version of JupyterLab on http://localhost:8888. This can be used to edit any Jupyter Notebook files in the repository. The JupyterLab instance runs with the password 'jupyterlab'.

 The nginx container runs Nginx webserver and displays the static site that Quarto renders. This runs at http://localhost:1337.

 The quarto container starts a Ubuntu 22.04 container, installs various things like Python, downloads Quarto and installs it, and then adds Python modules like jupyter, matplotlib, and panda. It then runs in the background so Quarto can be called on to render the qmd and ipynb files into the site/book like so:

 docker exec -it quarto quarto render

 There's a known issue with Quarto running in the Docker container in macOS due to the amd64 emulation of Docker Desktop for arm64 MacOS. See discussion at quarto-dev/quarto-cli#3308. This shouldn't occur in any other environment running Docker.

 Visual Code Studio - Quarto install

 This is not covered at present as there are conflicts with other approaches.

 Troubleshooting

 Raise an issue in the GitHub project if you need support.

 Quarto commands

 quarto render

 quarto preview

 quarto check

 Quarto Rendering

 Quarto help docs: https://quarto.org/

 Using quarto to render as multi-format.

 Use the command line to run Quarto: Powershell, GitBash, Cygwin, OSX shell, or terminal in Visual Studio Code ('VSC), etc.

 Execute the Quarto commands from the top level of your publication repository.

 Steps

 	
 IMPORTANT! Run and save Jupyter Notebooks, install the requirements.txt file before running Notebooks. SAVE all files.

 	
 Work locally with quarto preview - this will launch a browser window to preview your publication.

 	
 Render: Use command quarto render.

 	
 Upload to GitHub when ready using commit and push - Use GitHub Desktop, or from V'SC, etc.

 Troubleshooting

 Problems encountered so far:

 	
 Cover image: file needs to be local for epub rendering

 	
 Python path on Windows: If on Windows pip or python wont run. Check the solution here to add the python path for the Terminal April 23.

 	
 CMD.EXE - Quarto wont run. See https://www.windows-faq.de/2017/02/27/unc-pfade-in-der-eingabeaufforderung-benutzen/ (no fix as yet - April 2023.

 	
 Moving a repository locally: From Stackoverflow.

 If you are using GitHub Desktop, then just do the following steps:

 	
 Close GitHub Desktop and all other applications with open files to your current directory path.

 	
 Move the whole directory as mentioned above to the new directory location. (NB: The fdirectory has to be completely moved).

 	
 Open GitHub Desktop and click on the blue (!) "repository not found" icon. Then a dialog will open and you will see a "Locate..." button which will open a popup allowing you to direct its path to a new location.

 Editing Quarto

 Visual Studio Code is one option as an editor, but you can use any editor suite that you like.

 Install Visual Studio Code (VSC)

 https://code.visualstudio.com/

 Editing

 Load the whole repository folder into your editor.

 The key file to edit in Quart is _quarto.yml. This file contains the main configurations for your publication.

 If you are working on a fork the first thing you need to do is edit the repository address on line 19 - this will point the GitHub icon in your publication to your own GitHub repo.

 repo-url: https://github.com/NFDI4Culture/catalogue-003

 To add new sections to your publication jast add file names to the chapter list after line 12

 The other settings can we read about on the Quarto support pages, for example Book Structure.

 If you are using VSC you can run Notebooks as well as use the Terminal to run Quarto commands, and commit to GitHub.

 Jupyter Notebooks: Setup, Editing, and Saving

 General instructions for using Jupyter Notebooks.

 Installation of Python and Jupyter Notebooks is covered in Quarto install section.

 The default editor we use is Visual Code Studio, but you can use other Notebook editors.

 Steps

 First run: requirements.txt file for Python libraries. See: https://note.nkmk.me/en/python-pip-install-requirements/

 Use:

 # install with 'pip install -r requirements.txt'

 Then you can run, edit, and save Notebooks.

 Activity: Create a Wikidata query

 Objective: User builds a Wikidata query. See example query: paintings, Bavarian Collections, 1590 - 1750 - query link

 External LOD and media used: Wikidata LOD, and Wiki Commons, Web Gallery of Art (images) - https://www.wga.hu/

 Notes: Wikidata Query (help)

 	
 Allows for non-expert query building with plain language

 	
 View query as plain language and as code

 	
 Experience of building a query

 	
 Contact with some basic building blocks of Wikidata

 	
 View and export SPARQL query

 Steps

 	
 Go to https://query.wikidata.org/

 	
 Build a query around the 17C Bavarian painting collection to replicate the catalogue selection to be used in Activity B. Example:

 	
 Code Repo: Current publication link

 	
 Rendering: Current publication link

 	
 Example: Paintings; in collection; Bavarian Collections; 1600 - 1700 - query link

 	
 Step-by-step instructions to replicate parts of this query link base on this collection 17C Bavarian painting:

 Note: You will use the lefthand 'Query helper' GUI, where you can type in names of items. Sometimes you need to enter a term twice to get the correct item to appear.

 Items names are in bold below with their corresponding identifiers.

 	
 Go to https://query.wikidata.org/

 	
 Enable split view with i info button top left.

 	
 Filter: instance of P31, painting Q3305213 - wdt:P31 wd:Q3305213.

 	
 Filter: collection P195, Bavarian State Painting Collection Q812285 - wdt:P195 wd:Q812285.

 	
 Play button - bottom left - renders query below

 	
 Show: creator P170; image P18; copyright status P6216; inception P571.

 	
 Play button - bottom left - renders query below

 	
 Image grid view :-)

 	
 Limit

 	
 Dates from to 1590-1750 (code only)

 BIND(YEAR(?inception) AS ?inceptionyear)

 FILTER((1590 <= ?inceptionyear) && (?inceptionyear < 1750))

 	
 Link query: https://w.wiki/6MGX - results: https://w.wiki/6MGY

 	
 Participants can change the selection criteria around the available criteria: artists, dates, etc., as in collection 17C Bavarian painting

 	
 Completion: Paste your query link into the HedgeDoc link provided. https://demo.HedgeDoc.org/s/4gr9JvUS7

 - END of activity.

 Activity: Making SPARQL Queries in Wikidata of Collections

 Keywords: Collections, Wikidata, SPARQL

 If you are not familiar with creating a Wikidata SPARQL query then see the section on how to create a query: Activity: Create a Wikidata query

 The activity goal

 Create a sample SPARQL query of a cultural collection of a museum and save a link to the query on your Wikiversity user page.

 Note: Two collections are needed as the painting collection is easier to add to Jupyter Notebooks as you edit existing data. The second general collection is used to explore more options - assistence will be needed to help move the second query to the Jupyter Notebooks as they can be complex.

 	
 First one of a painting collection, and then,

 	
 A second one - of any type of media or artifact from a collection: books, sculpture, photography, etc.

 Here is an example: Bavarian Collections, 1590 - 1750 SW March 2023

 If you need support the GitHub Project (task tracker) for the class is here - titled: Prototype catalogue - ADA CP pipeline.

 Later in the workflow the query will be added to a Jupyter Notebook for rendering in Quarto.

 Create the two queries and add the query links to Wikiversity.

 Query 1: A painting collection

 The Painting Notebook is simpler to move to Jupyter Notebooks as the number of edits needed are fewer.

 	
 Use and copy the existing painting collection and modify the setting Bavarian Collections, 1590 - 1750.

 	
 The exercise is to change three parts: the painting collection, date perameters, and number of items.

 	
 Collection: Line 9 - ?item wdt:P195 wd:Q812285: Add in the identifier of a different collection - see list here Here is a sample list of painting collections found on Wikidata, Wikidata:WikiProject sum of all paintings/Collection. As an example here the the Frick Museum - https://www.wikidata.org/wiki/Q682827 has a unique identifier of unique Q682827.

 	
 Date: Line 37 - FILTER((1590 <= ?inceptionyear) && (?inceptionyear < 1750)): here change the from and to dates.

 	
 Number of items: Line 40 - LIMIT 9: Change the number of items and run preview.

 Now copy the query URL and save the link to your Wikiversiyt page. To copy the link you need to have previewed the query and bottom right is a short link copy button (if this doesnt work - copy the URL from your browsers address bar). Later we will add the new query to the Notebook painting.ipny.

 Query 2: Make your own collection query

 Note: We want to have images in our query, using the image grid view allows you to preview images.

 Resources for finding collections: Data models and information

 The links will help you find collections and see what types of artwork or media are listed on Wikidata.

 The help and examples in the query service are useful for seeing examples and modifying them https://query.wikidata.org/.

 The examples section has a RUN IT link under each examples where the query will load for you. Note to check the image grid view.

 As example here is one of scultures by Max Bill. You can use this and change the artists name, for example to Donatello.

 	
 Museums

 	
 Film

 	
 WikiProject sum of all paintings

 	
 Art genres

 	
 Books

 	
 GLAM WikiProjects

 Steps for making your own query

 	
 Start with a blank query https://query.wikidata.org/

 	
 Use the Examples button top left and then edit the example, or use DuckduckGo or Google to search for queries to edit.

 	
 Save your query link on your Wikiversity user homepage.

 In the next section 'Transfering a Wikidata SPARQL query to a Juypter Notebook' you will see how to move your queries to Jupyter Notebooks.

 Transfering a Wikidata SPARQL query to a Juypter Notebook

 	
 Query 1: A painting collection - can already be rendered in the Notebook and by Quarto.

 	
 Query 2: Yourn own collection query - you will need assistance in the class to render this as the outputted SPARQL metadata results needs to be processed by some Python code and this quickly becomes complicated.

 Query 1: A painting collection

 For this collection you simply edit the existing Notebook for the painting collection 'paintings.ipynb' rename as paintings_1xx.ipynb (with xx as your initails) - transfering across the new values that you have already created. See the section 'Making SPARQL Queries in Wikidata of Collections'.

 Figure 1: Where to add your Wikidata SPARQL URL link and paste in the full query.

 These are the values being changed: Collection, Date range, and Number of items.

 	
 All you need to do is paste in two items into the main cell of the Notebook:

 	
 The SPARQL URL - see the green text indicated in Figure 1

 	
 Paste in the complete body of the SPARQL query - see the orange text in Figure 1. Note all of your query is pasted between the four apostrohies top and bottom:

 ''''

 your query

 '''''

 Then run the Notebook and save the Notebook file when you are done and any other files edited.

 Note: Change the notebook name in the _quarto.yml TOC so that your new file is included in the publication. Change paintings.ipynb to paintings_1xx.ipynb.

 Note: Ensure requirements.txt has been added and run.

 To render the output in Quarto, run the Quarto commands in your terminal - 'quarto preview' and/or 'quarto render'.

 When your finished you can upload the results to your GitHub repository.

 Query 2: Your custom collection query

 Because SPARQL queries are varied and complex the process of moving the query into a Jupyter Notebook is not simple and involved knowledge of SPARQL and Python. The challenge is that the SPARQL metadata output has to be parsed by Python for presentation in the publication and to do this custom code needs to be written.

 To help with this obstacle a support service is in place to consult and add the Python code to your Notebooks.

 When you have completed the steps below and have a Notebook ready raise a ticket in the GitHub Project and assign to support and we will review the Notebook.

 See all class members collection notebooks here. This is a test zone where support will edit copies of your notebooks to show how to make them woirk: https://github.com/NFDI4Culture/sandbox-notebook-rendering

 Steps

 This will prepare the Notebook to output the SPARQL results only. The additional rendering will need to be added by support.

 Create a new Notebook in your Quarto publication 'collection-name.ipynb'.

 Back in the custom collection query at the bottom right there is a <code> button - click on the button and it will launch a preview window. Top right click on the Python tab, this will present the Query as Python code. Now copy and paste the code into your Notebook.

 Next, we want to copy the URL of your query to then also past this into your notebook. This will allow users to review your orginal query. The URL is found on the bottom right of the query page, as copy short link. If this does not work just copy the long address from your browser address bar.

 Paste your query link into the Notebook as a comment, which means haveing a # at the start of the line. Like so, underneath the lines shown here:

 import sys

 from SPARQLWrapper import SPARQLWrapper, JSON

 # query link - https://w.wiki/6YJi based on https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples#Paintings_by_Gustav_Klimt

 To finish your Notebook editing insert a Markdown field above your code cell as add a desciption, e.g.,

 Custom Collection by Simon Worthington (April 23): Paintings by Lucas Cranach the Elder https://www.wikidata.org/wiki/Q191748.

 The collection Notebook only contains the SPARQL query and needs additional Python adding to parse the metadata output.

 Save and run your Notebook. The result will be the SPARQL unformatted output.

 Add your Notebook to the Quarto TOC by adding the file name of your collection to the TOC in the file _quarto.yml, under the chapter header on line 12. Save and render the quart publication to see the results.

 To complete this part raise a ticket in the GitHub project assigning to support.

 This concludes this part of the process.

 Publishing Tasks

 These are the small tasks needed for getting ready to publish. There will be an additional Flight Check round after this before completeing publishing.

 	
 Add a cover image

 	
 Update Imprint (colophon)

 	
 Add Essay

 	
 Change Style

 	
 Update the readme information

 	
 Tidy up the TOC

 	
 Add a cover image: Add image - instructions from Quarto help.

 	
 You need to make a cover image and add link to the _quarto.yml configuration file. The image size can be any size. Recommend to use 2,560 x 1,600 pixels which is Amazon Marketing Cover Image size.

 Upload your image to the top level of repository.

 Then link in the file _quarto.yml at the link cover-image: as for example

 Cover-image: cover.jpg

 See example _quarto.yml cover link. File can be in repo or online.

 	
 Update Imprint (colophon): file name - colophon.ipynb

 The colophon is made of two parts. The first part that you will edit using instructions below. And the second part which automatically comes for the Thoth.pub book metadata system.

 	
 To get a DOI you need to register one at Zenodo. Make a Zenodo deposit for a book: Make a pre-release and get a DOI. You only need the minimal information to start with and the fields can be changed later. See Zenodo help - search for’ Reserve DOI ‘.

 	
 Add a Markdown cell after the Notebook metadata cell. Here is an example you can copy. Add and fill these fields:

 	
 Fork title

 	
 Author

 	
 ORCID

 	
 Date

 	
 DOI

 	
 Repository URL

 	
 Add Essay

 	
 Paste and edit Markdown here collection003.qmd. The essay is only for illustration purposes. Feel free to use Wikipedia or some AI content. Any content must be cited and be open licensed.

 	
 Change Style

 	
 See a list of styles https://quarto.org/docs/output-formats/html-themes.html e.g., journal. To change the style simply add the style to the _quarto.yml (in this example see line 36) file and re-render the publication.

 	
 Update the readme information

 	
 See files README.md and index.qmd. Add minimum publication information, which can be a copy of your colophon. See the example file.

 	
 Tidy up the TOC

 	
 Remove other Notebooks from the chapter list in _quarto and add any other Notebooks or files to the chapter list. Remember to render and push to complete the publishing.

 	
 # put a hash in front of chapters to omit

 	
 Mynewchapter.qmd or .ipynb

 Parts of the book → Files to modify or add

 Quick reference file look-up.

 Note: _quarto.yml is where all book configurations are done for Quarto.

 Cover

 	
 _quarto.yml at line cover-image:

 	
 either edit web address

 	
 or add cover file to add in [directory]

 Colophon

 	
 colophon.ipynb

 	
 (1st cell contains notebook metadata, anything reading the notebook reads this)

 	
 EDIT markdown in 2nd cell manually

 	
 3rd cell: This cell collection book metadata from Thoth book metadata service.

 	
 !! save notebook because quarto only renders what is (executed and) saved

 Essay

 	
 collection003.qmd (qmd means Quarto-Markdown)

 	
 Change text according to your collection

 Collections

 	
 paintings_1xx.ipynb <-- use this name for your new collection, plus your initials instead of xx (CREATE via copying “paintings.ipynb”)

 	
 Simple: Take the painting notebook, change collection name, number of items, dates, and RUN and SAVE. (see earlier instructions)

 	
 Advanced: Make own custom collection (own WikiData query), needs custom python. This will be added by support.

 	
 Create empty file named with your initials at end: collection_2xx.ipynb

 	
 You can get your code out of Wikidata query service directly: Move own Wikidata Query here via: code → Python → Copy/Paste

 	
 Copy-paste metadata cell from “Paintings” (1st cell contains notebook metadata, anything reading the notebook reads this)

 	
 Below: create another markdown cell and Copy-paste Query shortlink and SAVE. This is so your query can be referenced by support.

 	
 Add query python as a python cell. Run and save.

 Style

 	
 _quarto.yml

 	
 See line theme:

 Readme

 	
 README.md

 	
 And for Quarto: index.qmd

 Include new files in TOC

 	
 _quarto.yml

 	
 At line 12 chapters: decide what goes into our publication

 	
 Include: paintings_1xx.ipynb, collection_2xx.ipynb

 	
 Exclude things you do not want to have in your publication (video, …)

 	
 Make sure files are in right order:

 	
 Index.qmd

 	
 colophon.ipynb

 	
 collection003.qmd

 	
 paintings_1xx.ipynb

 	
 collection_2xx.ipynb

 Repository address

 	
 At line 21 repo-url, and SAVE. E.g., repo-url: https://github.com/NFDI4Culture/catalogue-003

 Note: Render and push back changes.

 	
 Run notebooks, save notebooks.

 	
 Terminal: quarto render

 	
 Push back to repo via GitHub desktop, or GitHub in VSCode

 	
 Add summary when committing to main

 	
 And Push

 Review and Flight Check

 These items will be covered in the class.

 	
 Flight check: README; LICENCE; and add CONTRIBUTE file. Check other parts.

 	
 Make a GitHub Release.

 	
 Complete Zenodo deposit and release: We will add a PDF and an interoperable form. In this case a repository Zip file downloaded from the Github release

 	
 Publish!

 Automating Exhibition Catalogue Creation
 by Team Editorial

 Creative Commons Share-Alike 4.0

 Title: Automating Exhibition Catalogue Creation

 Author: Team Editorial

 Published by: ADA Semantic Publishing Pipeline

 Last updated: 2023-05-04

 Created: 2023-04-28

 Language: English (United States)

 Created by: Editorial Team

 	Cover

 	Title page

 	About the prototype

 	Publication type: Use case - An exhibition catalogue

 	Learning points

 	Software (open-source)

 	AI Software

 	Activity: Editing a Jupyter Notebooks and accessing video

 	Steps

 	Activity: GitHub on boarding

 	Quarto Install

 	Options

 	Manual install

 	Docker install

 	Docker Compose

 	Visual Code Studio - Quarto install

 	Troubleshooting

 	Quarto commands

 	Quarto Rendering

 	Steps

 	Troubleshooting

 	Editing Quarto

 	Install Visual Studio Code (VSC)

 	Editing

 	Jupyter Notebooks: Setup, Editing, and Saving

 	Steps

 	Activity: Create a Wikidata query

 	Steps

 	Activity: Making SPARQL Queries in Wikidata of Collections

 	The activity goal

 	Query 1: A painting collection

 	Query 2: Make your own collection query

 	Resources for finding collections: Data models and information

 	Steps for making your own query

 	Transfering a Wikidata SPARQL query to a Juypter Notebook

 	Query 1: A painting collection

 	Query 2: Your custom collection query

 	Steps

 	Publishing Tasks

 	Parts of the book → Files to modify or add

 	Note: Render and push back changes.

 	Review and Flight Check

 	Copyright

EPUB/images/f1dc39b3-91a2-4377-bc97-1ba6e2f15706.png
) File Edit Selecon View Go Run Terminal Help Jop——) oDoQmoe - X
| L e B paintingsipynb ® ® vooe . Erel 1770 @ m -
 CATALOGUE003 [B0 @ @ paintingsipynb > 4 from SPARQLWrapper import SPARQLWrapper, JSON
p > .quarto + Code + Markdown | [> RunAll = Clear All Outputs 'O Restart | [Variables Outline -+ B python
;;;";; DV 12 user_agent - 'Ex _Books_conference bot/8.8 (https://github.com/SimonXIX/Experimental Books workshop; y.ac.uk)’ =Dy Dy B - W
13
& apicache-py3 . 14 # SPARQL query
15 colophon.fies 15 # see in Wikidata's Query Service GUI at:
[——% 16 # https://query.wikidata.org/
> uhtml #%23defaultVieid ECTH20%3F i ten20%3F i incepti reator pyright¥2e%3FcopyrightLabe .
85 it i i inti %26proper
20collect Tan inti ecti wikidat :
rgxaFuiki%2Fuiki ikiProject_sum_of_all painti Tlecti 1an_State Painting Coll 1 0.
A i S%20creatork20proper WdtR3APL § ten%20udt¥3APL70%20%3F creator
8 collectionipynb u 3 : p gen20.
@ ® collection003.gmd i s%20copyright’ 14 3Fcopyright%2e.
O e P571%20%3F inception.
incep incep ilter r
1] ;Im':d B 201 T inceptiony inceptionyear: %201 iki i
ibaseX3Al 2 1 esuLts%ALINITX209
Rt 17 query = "
@ paintings.ipynb 18 #defaultview: ImageGrid
® READMEmd 19 SELECT 2item 2itemLabel inceptionyear 2creator- 2creatorLabel 2copyright 2copyrightLabel 2image
R 20 WHERE
throttle.ctrl u ;; t I —
ind - items which:
2 el 23 # are instances of (udt:P31) paintings (wd:03385213)
24 4 have the property- (wdt:P195) of beingin-collection wd:(812285 (Bavarian State Painting Collections https://v.uikidata.org/wiki/Wiki ikiProject_sum_of_all_paintings/
Collection/Bavarian_State Painting Collections)
25 - item wdt:P31wd:Q3305213 .
26 2item wdt:P195 ud:Q812285 .
27 # get the item's creator property- (wdt:P170)
28 2item wdt:P170 2creator .
20 4 get the item’s image property (wdt:P18)
30 - 2item wdt:P18 2image
31 #get the item's copyright status: (wdt:P6216)
32 2item wdt:P6216 copyright .
33 [
34 2item wdt:P571 2inception.
35 BIND(YEAR(2inception) S 2inceptionyear)
36 [}
37
38 # filter out all paintings not created between the years 1600 and 1700
39 FILTER((1600 <= -2inceptionyear) & (?inceptionyear < 1700-))
40 - SERVICE wikibase:label { bd:serviceParan wikibase:language "en”. } '}
41 # limit to-nine results
42 LMIT 9
a3
) 44
> ourune pROBIEMS @) OUTPUT DESUGCONSOLE TERMINAL JUPYTER COMMENTS A x

. DEEDS
> quarto PS C:\git291019\catalogue-003>

EPUB/06a22f33-525b-4016-9b83-80203024162e.jpg
Baroque TOC

EPUB/images/fb0de97a-30bb-44d3-8848-6b38648d55b8.png
Edit repository details

Description

Catalogue demo publication - ADA CP Pipeline

Website
https://nfdi githubo/catalogue-003/
Use your GitHub Pages website

Topics (separate with spac

Include in the home page
Releas
Packages

Environments

EPUB/images/0745897f-933f-4fa1-b083-8bcd8cd90747.png
jump to.

Pull requests Issues Codespaces Marketpl

B NFDI4Culture / catalogue-003 | Public

<> Code

© lssues

11 Pull requests

M Projects 1 @ Security

83 General

Access
A Collaborators and teams

©) Moderation options

Code and automation
¥ Branches

© Tags

® Actions

& Webhooks.

B3 Environments

[Pages

Security
@ Code security and analysis
£ Deploy keys

(#) Secrets and variables

Integrations
@\ GitHub Apps

2 Email notifications

I Insights

lace Explore

n <R Edit Pins ~

3 Settings

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages from a GitHub repository.

Your site is live at https://nfdi4culture github.io/catalogue-003/ O Visitsite e

Build and deployment

Source

Deploy from a branch ~

Branch
Your GitHub Pages site is currently being built from the /docs folder in the main branch. Leam more.

P] (M) (o] mm—

Leam how to add 2 Jekyll theme to your site.

Custom domain

Custom domain
Custom domains allow you to serve your site from a domain other than nfdi4culture. github. io. Leam more.

Save || Remove

DNS records should point to the internationalized domain name .

Enforce HTTPS
— Required for your site because you are using the default domain (rFdidculture. github. o)

HTTPS provides a layer of encryption that prevents others from snooping on or tampering with traffic to your sie,
When HTTPS is enforced, your ste wil only be served over HTTPS. Learn more.

© Unwatch 6

¥ Fork 1B

v Star 0

