

 [image: Cover image]

 Baroque AI

 Programme Guide

 Version v1.0

 by Simon Worthington

 Baroque AI

 Publication prototype

 A prototype publication of a fictional 'exhibition catalogue' based on a Wikidata based collection of seventeenth century painting from the Bavarian State Painting Collections. The prototype shows how with a compuational publishing pipeline different distributed linked open data (LOD) sources can be brough together in a multi-format computational publication — allowing for asynchronous collaborative working. Distributed LOD sources include: Wikidata/base, Nextcloud, Thoth, Semantic Kompakkt, TIB AV Portal, and more.

 Prototype series: Baroque TOC

 Coordinated by Simon Worthington - NFDI4Culture @Open Science Lab, TIB, Hannover

 March-April 2023

 Venus und Cupido, Heinrich Bollandt, between circa 1620 and circa 1630. https://commons.wikimedia.org/wiki/File:Heinrich_Bollandt_-_Venus_und_Cupido.jpg This work is in the public domain.

 Important links for the class

 Coordination

 	
 Class information and links: https://nfdi4culture.github.io/class-ADA-CP-pipeline/

 	
 Project management and ticketing: https://github.com/orgs/NFDI4Culture/projects/2/views/1

 Publication

 	
 Demo publication: https://nfdi4culture.github.io/catalogue-003/

 	
 Repo link: https://github.com/NFDI4Culture/catalogue-003

 Activities

 	
 Nextcloud Markdown document link: https://tib.eu/cloud/s/qBx8SbqiPBBedye

 	
 Wikidata: collection query

 	
 Jupyter Notebook - TIB AV Portal and Semantic Kompakkt: https://github.com/NFDI4Culture/video-and-3d-notebook

 	
 GitHub: Fork and Clone publication repository: https://github.com/NFDI4Culture/catalogue-003

 Document DOI: | Author: Simon Worthington https://orcid.org/0000-0002-8579-9717 | CC BY-SA 4.0 International.

 To edit this document - request access by emailing simon.worthington@tib.eu.

 All software used is open-source OSI licence compliant. All content and other resources are open access with open licences.

 To edit this document - request access by emailing simon.worthington@tib.eu.

 Sample publications

 Prototype exhibition catalogue: <toc>Baroque</toc>

 A prototype framework publication for an exhibition catalogue.

 Cover

 The catalogue uses a Wikidata based collection of Bavarian collections of Baroque paintings. See: 17C Bavarian painting

 Publication URL: https://simonxix.github.io/Experimental_Books_workshop/

 Prototype publication catalogue: ScholarlyLed Catalogue

 Sample output of publishers titles from the Thoth single source book metadata service API.

 Website

 Publication URL: https://simonxix.github.io/scholarled_catalogue/

 Long list

 Example publications:

 	
 Exhibition catalogue demo: toc Baroque /toc from Experimental Books – Re-imagining Scholarly Publishing, COPIM. Workshop URL: https://experimentalbooks.pubpub.org/programme-overview

 	
 Publishers catalogue demo: ScholarLed A catalogue of ScholarLed presses built on a Quarto / Jupyter Notebook model for computational publishing. The publication is automatically updated daily to reflect any new books added by the publishers.

 	
 Proof of concept #1 - Computational Publication: Computational Publishing for Collections - ADA CP Prototype #1 - Nov 22

 	
 Proof of concept #2 - To be confirmed, completion for end of April 2023. This contains all parts fully rendered: Cover, colophon, essay, collection, graph, TIB AV Portal, Semantic Kompakkt

 	
 semanticClimate: To be confirmed - customised research papers readers made for regional climate change action plans based on IPCC reports and sourcing content from open research repositories.

 	
 FSCI Summer School - publishing from collections class: To be confirmed, July 2023

 About the prototype

 Publication type: Use case - An exhibition catalogue

 	
 We are creating a demonstration prototype: An exhibition catalogue about a baroque painting collection.

 	
 Objectives:

 	
 Write an exhibition catalogue essay using AI tools

 	
 Review the 'catalogue essay and AI tools' as open peer review

 	
 Create the parts of the the catalogue:

 	
 Cover

 	
 Colophon

 	
 Essay

 	
 Collection

 	
 What is the collection?

 	
 The catalogue uses part of a Wikidata based collection of Bavarian collections of Baroque paintings. See: 17C Bavarian painting.

 	
 We focus on the Baroque period: Bavarian Collections, 1590-1750 query link

 	
 We make a small collection of paintings - 9 in this case.

 	
 How are we using computational publishing and what is the prototype experiment?

 	
 Creating a publication from different distributed (federated) remote sources using linked open data.

 	
 Showing how asyncronous work can be carried out by team working on a single publication - this is the power of the TOC part! Which in more advanced domains becomes package management.

 Learning points

 Workflow activities that will be covered to create the exhibition catalogue:

 	
 Real-time collaborative editing,

 	
 Creating a Wikidata query of a collection,

 	
 Displaying a painting catalogue sample collection from Wikidata LOD query for a multi-format publication.

 	
 Editing a Jupyter Notebook in MyBinder,

 	
 Embedding media objects: Video - TIB AV Portal, and; Semantic Kompakkt,

 	
 Using GitHub

 	
 Accessing API content for colophon

 	
 Editing Wikidata collection query in Juypter Notebooks

 	
 Asycrononous collective working and making a publication from multiple remote Linked Open Data (LOD) sources, and

 	
 Rendering a multi-format publication with CSS styling.

 Software (open-source)

 Over 2023/24 the computational components will be added to the ADA Semantic Publishing Pipeline as well as introducing Vivliostyle Create Book markdown renderer and swapping to Jupyter Book computational book platform away from Quarto – https://github.com/NFDI4Culture/ada

 	
 Wikidata – https://www.wikidata.org/

 	
 Jupyter Notebooks – https://jupyter.org/

 	
 Jupyter Book – https://jupyterbook.org/

 	
 Quarto – https://quarto.org/

 	
 Semantic Kompakkt – https://semantic-kompakkt.de/

 	
 TIB AV Portal – https://av.tib.eu/

 	
 HedgeDoc – https://HedgeDoc.org/

 	
 Thoth – https://thoth.pub/

 	
 Vivliostyle – https://vivliostyle.org/

 	
 Create Book – Markdown renderer

 	
 Wikibase – https://wikiba.se/

 	
 Zenodo - https://zenodo.org/

 	
 NextCloud - Tetx editor and Markdown editor - Text : https://github.com/nextcloud/text Markdown: https://apps.nextcloud.com/apps/files_markdown

 AI Software

 To be confirmed

 https://openai.com/blog/chatgpt

 https://www.perplexity.ai/

 Activity: Nextcloud Markdown editing

 Nextcloud Markdown document link: https://tib.eu/cloud/s/qBx8SbqiPBBedye

 	
 Nextcloud has a markdown editor that allows real-time editing.

 	
 The files generated here can simply be added to the publication TOC and then rendered in the final publication.

 Catalogue essay

 The markdown editor will be used to create the catalogue essay.

 AI tools will be used to generate a sample text.

 The tools and the text will be reviewed using Open Peer Review methods.

 Sample AI tools

 	
 https://openai.com/blog/chatgpt

 	
 https://www.perplexity.ai/

 About open peer review

 Worthington, S. (2022). Designing an Open Peer Review Process for Open Access Guides. Community-Led Open Publication Infrastructures for Monographs (COPIM). https://doi.org/10.21428/785a6451.e0245b43

 Activity: Create a Wikidata query

 Objective: User builds a Wikidata query. See example query: paintings, Bavarian Collections, 1590 - 1750 - query link

 External LOD and media used: Wikidata LOD, and Wiki Commons, Web Gallery of Art (images) - https://www.wga.hu/

 Notes: Wikidata Query (help)

 	
 Allows for non-expert query building with plain language

 	
 View query as plain language and as code

 	
 Experience of building a query

 	
 Contact with some basic building blocks of Wikidata

 	
 View and export SPARQL query

 Steps

 	
 Go to https://query.wikidata.org/

 	
 Build a query around the 17C Bavarian painting collection to replicate the catalogue selection to be used in Activity B. Example:

 	
 Code Repo: Current publication link

 	
 Rendering: Current publication link

 	
 Example: Paintings; in collection; Bavarian Collections; 1600 - 1700 - query link

 	
 Step-by-step instructions to replicate parts of this query link base on this collection 17C Bavarian painting:

 	
 Go to https://query.wikidata.org/

 	
 Enable split view with i info button top left.

 	
 Filter: instance of P31, painting Q3305213 - wdt:P31 wd:Q3305213.

 	
 Filter: collection P195, Bavarian State Painting Collection Q812285 - wdt:P195 wd:Q812285.

 	
 Play button - bottom left - renders query below

 	
 Show: creator P170; image P18; copyright status P6216; inception P571.

 	
 Play button - bottom left - renders query below

 	
 Image grid view :-)

 	
 Limit

 	
 Dates from to 1590-1750 (code only)

 BIND(YEAR(?inception) AS ?inceptionyear)

 FILTER((1590 <= ?inceptionyear) && (?inceptionyear < 1750))

 	
 Link query: https://w.wiki/6MGX - results: https://w.wiki/6MGY

 	
 Participants can change the selection criteria around the available criteria: artists, dates, etc., as in collection 17C Bavarian painting

 	
 Completion: Paste your query link into the HedgeDoc link provided. https://demo.HedgeDoc.org/s/4gr9JvUS7

 - END of activity.

 Activity: Editing a Jupyter Notebooks and accessing video

 Objective: Running and editing Juypter Notebooks in MyBinder and retrieving video and 3D models as embeds.

 External LOD and media used: TIB AV Portal, and Semantic Kompakkt

 Notes: Jupyter Notebooks editing in MyBinder

 	
 Run a Jupyter Notebook in MyBinder

 	
 Edit a Jupyter Notebook

 	
 Render a Jupyter Notebooks

 Links:

 	
 Sample Jupyter Notebook: Video and 3D Notebook embeds

 	
 TIB AV Portal: https://av.tib.eu/

 	
 Semantic Kompakkt demo site: https://kompakkt.wbworkshop.tibwiki.io/explore

 	
 View a model, copy the iframe embed from the folder icon, top right. In the Notebook paste in the complete iframe cover replacing the existing iframe:

 <iframe

 name="Doric Column"

 src="https://kompakkt.wbworkshop.tibwiki.io/viewer/?entity=63e8c22910e4f555d1f656ca&mode=open"

 allowfullscreen

 loading="lazy"

 ></iframe>

 Steps

 	
 Open Notebook in the browser using MyBinder - Video and 3D Notebook embeds - click the 'launch binder' button to run the Notebook in MyBinder.

 	
 Add new videos and 3D models to the Notebook from TIB AV Portal and Semantic Kompakkt.

 	
 Open a second browser tab and load TIB AV Portal

 	
 Choose a video and copy across the video ID from the URL https://av.tib.eu/media/60729

 	
 Paste the video ID into the video iframe field and run the cell to render

 	
 Open Semantic Kompakkt demo site: https://kompakkt.wbworkshop.tibwiki.io/explore

 	
 View a model, copy the iframe embed from the folder icon, top right. In the Notebook paste in the complete iframe cover replacing the existing iframe:

 <iframe

 name="Doric Column"

 src="https://kompakkt.wbworkshop.tibwiki.io/viewer/?entity=63e8c22910e4f555d1f656ca&mode=open"

 allowfullscreen

 loading="lazy"

 ></iframe>

 	
 Run the Notebook

 	
 3D view size, we can make the initial view bigger, add:

 <iframe

 width="1200" height="630"

 	
 Download Notebook

 	
 Render some videos and 3D models in the Quarto book. Pass along video id codes and 3d models using a hedge doc and chat to the Quarto render. The rendering and final display will take less than 10 minutes (hopefully): a. The code needs to be added to the main repo; b. Rendered locally; c. Uploaded to GitHub; d. Time for GitHub Pages to finish loading.

 	
 Code: https://github.com/SimonXIX/Experimental_Books_workshop/blob/main/paintings.ipynb

 	
 Rendering: https://simonxix.github.io/Experimental_Books_workshop/paintings.html

 Activity: GitHub on boarding

 Objective: On boarding and familiarisation with using GitHub for publishing and asynchronous working.

 Publication repository: https://github.com/NFDI4Culture/catalogue-003

 	
 Creating an account

 	
 Joining an organisation

 	
 Forking a repository

 	
 Cloning a repository

 	
 Turning on Github Pages

 	
 Enabling a local editor: Visual Code Editor

 	
 Attribution and citation

 Quarto Install

 Quarto help docs: https://quarto.org/

 Options

 Docker

 Docker Compose

 Text source: Readme - Thanks to Simon Bowie

 https://github.com/NFDI4Culture/cp4c

 This repository also contains Docker Compose and Dockerfiles for running the various applications in Docker containers.

 Run docker-compose up -d --build to start the containers and docker-compose down to stop the containers.

 The jupyterlab container runs a stand-alone version of JupyterLab on http://localhost:8888. This can be used to edit any Jupyter Notebook files in the repository. The JupyterLab instance runs with the password 'jupyterlab'.

 The nginx container runs Nginx webserver and displays the static site that Quarto renders. This runs at http://localhost:1337.

 The quarto container starts a Ubuntu 22.04 container, installs various things like Python, downloads Quarto and installs it, and then adds Python modules like jupyter, matplotlib, and panda. It then runs in the background so Quarto can be called on to render the qmd and ipynb files into the site/book like so:

 docker exec -it quarto quarto render

 There's a known issue with Quarto running in the Docker container in macOS due to the amd64 emulation of Docker Desktop for arm64 MacOS. See discussion at quarto-dev/quarto-cli#3308. This shouldn't occur in any other environment running Docker.

 Manual install

 https://quarto.org/docs/get-started/

 They miss out that you need Python installed and Jupyter Lab and a working terminal to install them

 https://www.python.org/downloads/

 https://jupyter.org/install

 Also install Panda: py -m pip install panda

 As well as knowing what the Python prompt and escape looks like: https://stackoverflow.com/questions/41524734/how-to-exit-python-script-in-command-prompt

 Visual Code Studio

 This is not covered at present as there are conflicts with other approaches.

 Troubleshooting

 Quarto commands

 quarto render

 quarto preview

 quarto check

 Editing in Quarto: With Visual Studio Code

 Visual Studio Code is one option as an editor, but you can use any editor suite that you like.

 Install Visual Studio Code (VSC)

 https://code.visualstudio.com/

 Editing

 	
 Edit and save from VSC.

 	
 Don't run Quarto or upload to GitHub from VSC for this demo publication.

 	
 Editing Jupyter Notebooks in VSC. This is optional.

 Rendering

 Quarto help docs: https://quarto.org/

 Using quarto to render as multi-format.

 Use the command line to run Quarto: Powershell, GitBash, Cygwin, OSX shell, etc.

 	
 Run and save Jupyter Notebooks

 	
 Work locally with quarto preview

 	
 Render: Use command quarto render

 	
 Upload to GitHub when ready - Use GitHub Desktop.

 Activity: Making SPARQL Query in Wikidata of a Collection

 Collections, Wikidata, and SPARQL.

 See section on how to create a querie: Activity: Create a Wikidata query

 The exercise: Create a sample SPARQL query of a cultural collection of a museum and save a link to the query with publication in its related Github project.

 Here is an example: Bavarian Collections, 1590 - 1750 SW March 2023

 The Project for the class is here - titled: Prototype catalogue - ADA CP pipeline.

 Later in the workflow the query will be added to a Jupyter Notebook for rendering in Quarto.

 What needs to be in the query

 	
 The query need to be from a museum.

 	
 Use the tag collection P195.

 	
 There need to be an image field.

 	
 There needs to be a title field.

 	
 And have 3 to 6 more fields.

 	
 Include the copyright status field.

 	
 Limit to 9 items.

 Steps in the process

 	
 Make the query - you can make several

 	
 Store the querie on the GitHub Project

 	
 Review queries as a group

 Transfering a Wikidata SPARQL query to a Juypter Notebook

 Example

 Query - 17C Bavarian Painting Collection

 Jupyter Notebook - Binder

 Baroque AI
 by Simon Worthington

 CC BY-SA 4.0

 Title: Baroque AI

 Author: Simon Worthington

 Published by: Open Science Lab

 Last updated: 2023-03-24

 Created: 2023-03-16

 Language: English (United States)

 Created by: Simon Worthington

 	Cover

 	Title page

 	Baroque AI

 	Publication prototype

 	Important links for the class

 	Sample publications

 	Prototype exhibition catalogue: <toc>Baroque</toc>

 	Prototype publication catalogue: ScholarlyLed Catalogue

 	Long list

 	About the prototype

 	Publication type: Use case - An exhibition catalogue

 	Learning points

 	Software (open-source)

 	AI Software

 	Activity: Nextcloud Markdown editing

 	Catalogue essay

 	Sample AI tools

 	About open peer review

 	Activity: Create a Wikidata query

 	Steps

 	Activity: Editing a Jupyter Notebooks and accessing video

 	Steps

 	Activity: GitHub on boarding

 	Quarto Install

 	Options

 	Docker

 	Docker Compose

 	Manual install

 	Visual Code Studio

 	Troubleshooting

 	Quarto commands

 	Editing in Quarto: With Visual Studio Code

 	Install Visual Studio Code (VSC)

 	Editing

 	Rendering

 	Activity: Making SPARQL Query in Wikidata of a Collection

 	What needs to be in the query

 	Steps in the process

 	Transfering a Wikidata SPARQL query to a Juypter Notebook

 	Example

 	Copyright

EPUB/images/f5083335-f136-468e-b39e-bc79a4d91493.png

EPUB/43eb0804-c8c5-4cdc-872f-48634c74b8ec.jpg

EPUB/images/97bd47a8-b361-4c39-8921-627577b6db8e.jpg

EPUB/images/43eb0804-c8c5-4cdc-872f-48634c74b8ec.jpg

